- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
01
- Author / Contributor
- Filter by Author / Creator
-
-
Czenszak, Jack (1)
-
Holtzen, Steven (1)
-
Li, John M (1)
-
Marshall, Brianna (1)
-
Moy, Cameron (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Exact probabilistic inference is a requirement for many applications of probabilistic programming languages (PPLs) such as in high-consequence settings or verification. However, designing and implementing a PPL with scalable high-performance exact inference is difficult: exact inference engines, much like SAT solvers, are intricate low-level programs that are hard to implement. Due to this implementation challenge, PPLs that support scalable exact inference are restrictive and lack many features of general-purpose languages. This paper presents Roulette, the first discrete probabilistic programming language that combines high-performance exact inference with general-purpose language features. Roulette supports a significant subset of Racket, including data structures, first-class functions, surely-terminating recursion, mutable state, modules, and macros, along with probabilistic features such as finitely supported discrete random variables, conditioning, and top-level inference. The key insight is that there is a close connection between exact probabilistic inference and the symbolic evaluation strategy of Rosette. Building on this connection, Roulette generalizes and extends the Rosette solver-aided programming system to reason about probabilistic rather than symbolic quantities. We prove Roulette sound by generalizing a proof of correctness for Rosette to handle probabilities, and demonstrate its scalability and expressivity on a number of examples.more » « lessFree, publicly-accessible full text available June 10, 2026
An official website of the United States government
